login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324286
a(n) = A002487(A048675(n)).
3
0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 4, 2, 1, 1, 3, 1, 2, 3, 5, 1, 3, 1, 6, 2, 3, 1, 3, 1, 3, 4, 7, 2, 2, 1, 8, 5, 3, 1, 5, 1, 4, 1, 9, 1, 2, 1, 4, 6, 5, 1, 3, 3, 5, 7, 10, 1, 1, 1, 11, 2, 2, 4, 7, 1, 6, 8, 5, 1, 3, 1, 12, 3, 7, 2, 9, 1, 1, 1, 13, 1, 2, 5, 14, 9, 7, 1, 4, 3, 8, 10, 15, 6, 3, 1, 5, 3, 3, 1, 11, 1, 9, 3
OFFSET
1,6
COMMENTS
Like A323902 and A323903, this also has quite a moderate growth rate, even though some terms of A048675 soon grow quite big.
FORMULA
a(n) = A002487(A048675(n)) = A002487(A322821(n)).
a(A283477(n)) = A324287(n).
PROG
(PARI)
A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };
A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 22 2019
STATUS
approved