login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112193
Coefficients of replicable function number "54b".
9
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 95, 110, 127, 145, 167, 191, 218, 249, 283, 322, 365, 414, 469, 529, 597, 673, 757, 851, 955, 1071, 1199, 1341, 1499, 1673, 1865, 2078, 2313, 2572, 2857, 3171, 3517, 3897
OFFSET
0,4
COMMENTS
a(n) is the number of partitions of n into distinct parts where no part is a multiple of 9. - Joerg Arndt, Aug 31 2015
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^k)/(1 + x^(m*k)), then a(n) ~ exp(Pi*sqrt((m-1)*n/(3*m))) * (m-1)^(1/4) / (2^(3/2) * 3^(1/4) * m^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
a(n) ~ exp(2*Pi*sqrt(2*n/3)/3) / (6^(3/4) * n^(3/4)) * (1 - (9*sqrt(3)/ (16*Pi*sqrt(2)) + sqrt(2)*Pi/(9*sqrt(3))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
From Michael Somos, Oct 06 2019: (Start)
Expansion of q^(1/3) * eta(q^2) * eta(q^9) / (eta(q) * eta(q^18)) in powers of q.
Euler transform of period 18 sequence [1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...].
G.f. is a period 1 Fourier Series which satisifies f(-1 / (18 t)) = f(t) where q = exp(2 Pi i t).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + u*v) * (u^3 + v^3) - u*v * (1 + u^2*v^2).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = (w^2 - v) * (u^2 - v) - 2*u*v*w.
Convolution inverse of A261733.
(End)
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + ... Michael Somos, Oct 06 2019
G.f. = q^-1 + q^2 + q^5 + 2*q^8 + 2*q^11 + 3*q^14 + 4*q^17 + 5*q^20 + ...
MAPLE
b:= proc(n, i) option remember; local r;
`if`(2*n>i*(i+1)-(j-> 9*j*(j+1))(iquo(i, 9, 'r')), 0,
`if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 31 2015
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(9*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
b[n_, i_] := b[n, i] = Module[{q, r}, {q, r} = QuotientRemainder[i, 9]; If[2*n > i*(i+1) - 9*q*(q+1), 0, If[n == 0, 1, b[n, i-1] + If[i>n || r == 0, 0, b[n-i, i-1]]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 07 2016, after Alois P. Heinz *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^9] / (QPochhammer[ q] QPochhammer[ q^18]), {q, 0, n}]; (* Michael Somos, Oct 06 2019 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) / (eta(x + A) * eta(x^18 + A)), n))}; /* Michael Somos, Oct 06 2019 */
CROSSREFS
Cf. A261733.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A261772 (m=10).
Sequence in context: A304631 A298603 A134345 * A014215 A067014 A096791
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved