login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112196
McKay-Thompson series of class 56a for the Monster group.
1
1, 1, 1, 1, 3, 2, 2, 5, 6, 7, 7, 9, 12, 13, 16, 20, 25, 27, 31, 38, 44, 51, 58, 69, 80, 92, 102, 118, 141, 157, 177, 203, 234, 261, 292, 336, 382, 428, 475, 540, 610, 677, 757, 852, 957, 1060, 1179, 1318, 1470, 1634, 1806, 2011, 2236, 2469, 2724, 3020, 3350
OFFSET
0,5
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt(T28B + 2) in powers of q, where T28B = A112169. - G. C. Greubel, Jul 01 2018
a(n) ~ exp(sqrt(2*n/7)*Pi) / (2^(5/4) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 02 2018
EXAMPLE
T56a = 1/q +q +q^3 +q^5 +3*q^7 +2*q^9 +2*q^11 +5*q^13 +6*q^15 +...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 70; A:= (eta[q]*eta[q^7]/ (eta[q^4]*eta[q^28])); T28B := 1 + A + 4/A; a:= CoefficientList[Series[ (q*(T28B + 2) + O[q]^nmax)^(1/2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
PROG
(PARI) q='q+O('q^50); A = eta(q)*eta(q^7)/(q*eta(q^4)*eta(q^28)); T28B = A + 1 + 4/A; Vec(sqrt(q*(T28B + 2))) \\ G. C. Greubel, Jul 01 2018
CROSSREFS
Cf. A112169.
Sequence in context: A342331 A375752 A058608 * A021035 A371942 A259967
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved