OFFSET
0,5
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
K. Bringmann and H. Swisher, On a conjecture of Koike on identities between Thompson series and Roger-Ramanujan functions, Proc. Amer. Math. Soc. 135 (2007), 2317-2326. See page 2325 (A.5)
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339. See page 336.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
G.f.: G(x) * G(x^19) + x^4 * H(x) * H(x^19) where G() is g.f. of A003114 and H() is g.f. of A003106.
a(n) ~ exp(4*Pi*sqrt(n/57)) / (sqrt(2)*57^(1/4)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
T57A = 1/q +q^2 +q^5 +q^8 +3*q^11 +2*q^14 +4*q^17 +4*q^20 +...
MATHEMATICA
QP = QPochhammer; G[x_] := 1/(QP[x, x^5]*QP[x^4, x^5]); H[x_] := 1/(QP[x^2, x^5]*QP[x^3, x^5]); s = (G[x]*G[x^19] + x^4*H[x]*H[x^19]) + O[x]^60; CoefficientList[s, x] (* Jean-François Alcover, Nov 15 2015 *)
PROG
(PARI) {a(n) = local(A, A1, A2); if( n<0, 0, n = 2*n ; A = x^3 * O(x^n) ; A1 = ( eta(x + A) * eta(x^19 + A) / eta(x^2 + A) / eta(x^38 + A) )^2; A2 = -subst(A1, x, -x); polcoeff( x^4 / A1 / A2 - (A1 + A2) / 4 / x, n))} \\ Michael Somos, Jan 07 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved