The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261771 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(8*k)). 9
 1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 13, 15, 18, 22, 26, 30, 36, 42, 49, 58, 67, 77, 89, 103, 118, 136, 156, 177, 203, 231, 263, 299, 338, 383, 433, 489, 550, 620, 696, 781, 877, 981, 1097, 1227, 1369, 1526, 1702, 1893, 2104, 2339, 2595, 2877, 3189, 3530 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is the number of partitions of n into distinct parts where no part is a multiple of 8. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ exp(Pi*sqrt(7*n/6)/2) * 7^(1/4) / (4 * 6^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/ (2*Pi*sqrt(14)) + 7*Pi*sqrt(7)/(96*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017 G.f.: Product_{k>=1} (1 - x^(16*k-8))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*        [0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1]        [1+irem(d, 16)], d=divisors(j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015 MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(8*k)), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A261735. Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A112193 (m=9), A261772 (m=10). Column k=8 of A290307. Sequence in context: A340275 A342499 A325096 * A015743 A015755 A096443 Adjacent sequences:  A261768 A261769 A261770 * A261772 A261773 A261774 KEYWORD nonn AUTHOR Vaclav Kotesovec, Aug 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 17:11 EDT 2021. Contains 345417 sequences. (Running on oeis4.)