login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(8*k)).
9

%I #15 Feb 16 2018 10:09:29

%S 1,1,1,2,2,3,4,5,5,7,9,10,13,15,18,22,26,30,36,42,49,58,67,77,89,103,

%T 118,136,156,177,203,231,263,299,338,383,433,489,550,620,696,781,877,

%U 981,1097,1227,1369,1526,1702,1893,2104,2339,2595,2877,3189,3530

%N Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(8*k)).

%C a(n) is the number of partitions of n into distinct parts where no part is a multiple of 8.

%H Alois P. Heinz, <a href="/A261771/b261771.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) ~ exp(Pi*sqrt(7*n/6)/2) * 7^(1/4) / (4 * 6^(1/4) * n^(3/4)) * (1 - (3*sqrt(3)/ (2*Pi*sqrt(14)) + 7*Pi*sqrt(7)/(96*sqrt(6))) / sqrt(n)). - _Vaclav Kotesovec_, Aug 31 2015, extended Jan 21 2017

%F G.f.: Product_{k>=1} (1 - x^(16*k-8))/(1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Dec 07 2017

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

%p [0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1]

%p [1+irem(d, 16)], d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 31 2015

%t nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(8*k)), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A261735.

%Y Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A261770 (m=6), A097793 (m=7), A112193 (m=9), A261772 (m=10).

%Y Column k=8 of A290307.

%K nonn

%O 0,4

%A _Vaclav Kotesovec_, Aug 31 2015