OFFSET
0,3
COMMENTS
Also the number of reversed partitions of n with strictly decreasing first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).
LINKS
Eric Weisstein's World of Mathematics, Logarithmically Concave Sequence.
EXAMPLE
The partition (6,6,3,1) has first quotients (1,1/2,1/3) so is counted under a(16).
The a(1) = 1 through a(9) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(332) (432)
(431) (441)
(531)
(3321)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Greater@@Divide@@@Reverse/@Partition[#, 2, 1]&]], {n, 0, 30}]
CROSSREFS
The version for differences instead of quotients is A320470.
The ordered version is A342494.
The strictly increasing version is A342498.
The weakly decreasing version is A342513.
The strict case is A342518.
The Heinz numbers of these partitions are listed by A342525.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342098 counts partitions with adjacent parts x > 2y.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2021
STATUS
approved