login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342502
Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.
0
12, 210, 1050, 330, 1920, 390, 720, 150, 22950, 10710, 780, 5040, 27060, 26040, 2340, 13440, 8880, 360, 1950, 41370, 17790, 3630, 4320, 6510, 870, 76620, 15210, 21540, 5760, 29100, 2340, 66990, 1950, 3360, 5370, 16800, 6930, 40530, 4230, 3570, 15510, 10320
OFFSET
1,1
LINKS
T. Forbes, Prime k-tuplets
Eric Weisstein's World of Mathematics, Prime Triplet.
FORMULA
a(n) = A078946(n) - A078946(n-1) for n >= 2.
a(n) == 0 (mod 30) for n>1.
EXAMPLE
The first 4 terms of the sequence are 12, 210, 1050, 330, since the gaps between first elements of the first five quintuples {5,7,11,17,19}, {17,19,23,29,31}, {227,229,233,239,241}, {1277,1279,1283,1289,1291}, {1607,1609,1613,1619,1621} are, 17-5=12, 227-17=210, etc.
MAPLE
b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));
do p:= nextprime(p);
if andmap(isprime, [p+2, p+6, p+12, p+14]) then return p fi
od
end:
a:= n-> b(n+1)-b(n):
seq(a(n), n=1..65); # Alois P. Heinz, Mar 14 2021
MATHEMATICA
b[n_] := b[n] = Module[{p}, p = If[n == 1, 1, b[n-1]]; While[True, p = NextPrime[p]; If[AllTrue[{p+2, p+6, p+12, p+14}, PrimeQ], Return[p]]]];
a[n_] := b[n+1]-b[n];
Table[a[n], {n, 1, 65}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A078946.
Sequence in context: A307691 A129466 A259516 * A334886 A027399 A266910
KEYWORD
nonn
AUTHOR
James S. DeArmon, Mar 14 2021
STATUS
approved