login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.
0

%I #24 May 14 2022 11:21:57

%S 12,210,1050,330,1920,390,720,150,22950,10710,780,5040,27060,26040,

%T 2340,13440,8880,360,1950,41370,17790,3630,4320,6510,870,76620,15210,

%U 21540,5760,29100,2340,66990,1950,3360,5370,16800,6930,40530,4230,3570,15510,10320

%N Gaps between first elements of prime quintuples of the form (p, p+2, p+6, p+12, p+14). The quintuples are abutting: twin/cousin/sexy/twin pairs.

%H T. Forbes, <a href="http://anthony.d.forbes.googlepages.com/adf.htm">Prime k-tuplets</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>.

%F a(n) = A078946(n) - A078946(n-1) for n >= 2.

%F a(n) == 0 (mod 30) for n>1.

%e The first 4 terms of the sequence are 12, 210, 1050, 330, since the gaps between first elements of the first five quintuples {5,7,11,17,19}, {17,19,23,29,31}, {227,229,233,239,241}, {1277,1279,1283,1289,1291}, {1607,1609,1613,1619,1621} are, 17-5=12, 227-17=210, etc.

%p b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));

%p do p:= nextprime(p);

%p if andmap(isprime, [p+2, p+6, p+12, p+14]) then return p fi

%p od

%p end:

%p a:= n-> b(n+1)-b(n):

%p seq(a(n), n=1..65); # _Alois P. Heinz_, Mar 14 2021

%t b[n_] := b[n] = Module[{p}, p = If[n == 1, 1, b[n-1]]; While[True, p = NextPrime[p]; If[AllTrue[{p+2, p+6, p+12, p+14}, PrimeQ], Return[p]]]];

%t a[n_] := b[n+1]-b[n];

%t Table[a[n], {n, 1, 65}] (* _Jean-François Alcover_, May 14 2022, after _Alois P. Heinz_ *)

%Y Cf. A078946.

%K nonn

%O 1,1

%A _James S. DeArmon_, Mar 14 2021