login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266910
Number of size 2 subsets of S_n that generate a transitive subgroup of S_n.
1
1, 12, 210, 5520, 206760, 10473120, 688821840, 57039171840, 5805880778880, 712594633766400, 103804864923513600, 17709509301413529600, 3498328696524626764800, 792308057159314683187200, 203965258080479292004608000, 59229266937652347633377280000, 19270409372174365076286590976000
OFFSET
2,2
FORMULA
a(n) = (A122949(n) - (n - 1)!)/2.
EXAMPLE
a(3) = 12 because there are 15 = binomial(3!,2) size 2 subsets of S_3 and every such subset generates a transitive subgroup of S_3 except: {(),(12)}, {(),(13)}, {(),(23)}.
MATHEMATICA
nn = 20; a = Sum[n!^2 x^n/n!, {n, 0, nn}]; Drop[(Range[0, nn]! CoefficientList[Series[Log[a], {x, 0, nn}], x] - Table[(n - 1)!, {n, 0, nn}])/2, 2]
CROSSREFS
Cf. A122949.
Sequence in context: A342502 A334886 A027399 * A296681 A231260 A317199
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jan 05 2016
STATUS
approved