login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266913
Denominator of the volume of d dimensional symmetric convex cuboid with constraints |x1 + x2 + ... xd| <= 1 and |x1|, |x2|, ..., |xd| <= 1.
1
1, 1, 3, 12, 5, 180, 315, 2240, 567, 907200, 51975, 13305600, 289575, 80720640, 212837625, 3487131648000, 2297295, 64023737057280, 14849255421, 28963119144960000, 17717861581875, 140500090972200960000, 16436269594119375, 6204484017332394393600, 40639128117328125
OFFSET
1,3
COMMENTS
Reference A. Dubickas shows that all the volume integrals are rational with V[d] <= 2^d.
LINKS
R. Chela, Reducible Polynomials, Journal London Math. Soc. 38 (1963), pp 183-188 Eq. 7.
Arturas Dubickas, On the number of reducible polynomials of bounded naive height, Manuscripta Math. 144 (2014), pp 439-456, Eq. 4, 5 & Section 5.
EXAMPLE
For d = 3 the volume is 16/3, for each volume we have V[1] = 2, V[2] = 3, V[3] = 16/3, V[4] = 115/12, V[5] = 88/5, V[6] = 5887/180, V[7] = 19328/315, V[8] = 259723/2240, V[9] = 124952/567, V[10] = 381773117/907200, etc.
MATHEMATICA
V[d_] := Integrate[Boole[Abs[Sum[x[i], {i, 1, d}]] <= 1],
Table[x[i], {i, 1, d}] \[Element]
Cuboid[Table[-1, {i, 1, d}], Table[+1, {i, 1, d}]] (* Lorenz H. Menke, Jr. *)
v[d_] := With[{a = Array[x, d]}, RegionMeasure @ ImplicitRegion[a ∈ Cuboid[-Table[1, d], Table[1, d]] && -1 <= Total[a] <= 1, a]] (* Carl Woll *)
v[d_] := 2^(d+1)/(Pi) Integrate[Sin[t]^(d+1)/t^(n+1), {t, 0, Infinity}] (* Carl Woll *)
CROSSREFS
The numerator sequence is given by A269067.
Cf. A199832 The rational coefficient of the leading coefficient of the empirical rows duplicates these volume integrals in sequence. This is not a proof.
Sequence in context: A367183 A214401 A009781 * A307027 A304566 A291156
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
a(11)-a(25) from Lorenz H. Menke, Jr., May 10 2018
STATUS
approved