OFFSET
1,1
COMMENTS
Reference A. Dubickas shows that all the volume integrals are rational with V[d] <= 2^d.
LINKS
R. Chela, Reducible Polynomials, Journal London Math. Soc. 38 (1963), pp 183-188 Eq. 7.
Arturas Dubickas, On the number of reducible polynomials of bounded naive height, Manuscripta Math. 144 (2014), pp 439-456, Eq. 4, 5 & Section 5.
Mathematica Stack Exchange, How to improve or optimize a volume integration over a cuboid
EXAMPLE
For d = 3 the volume is 16/3, for each volume we have V[1] = 2, V[2] = 3, V[3] = 16/3, V[4] = 115/12, V[5] = 88/5, V[6] = 5887/180, V[7] = 19328/315, V[8] = 259723/2240, V[9] = 124952/567, V[10] = 381773117/907200, etc.
MATHEMATICA
V[d_] := Integrate[Boole[Abs[Sum[x[i], {i, 1, d}]] <= 1],
Table[x[i], {i, 1, d}] \[Element]
Cuboid[Table[-1, {i, 1, d}], Table[+1, {i, 1, d}]] (* Lorenz H. Menke, Jr. *)
v[d_] := With[{a = Array[x, d]}, RegionMeasure @ ImplicitRegion[ a ∈ Cuboid[-Table[1, d], Table[1, d]] && -1 <= Total[a] <= 1, a]] (* Carl Woll *)
v[d_] := 2^(d+1)/(Pi) Integrate[Sin[t]^(d+1)/t^(n+1), {t, 0, Infinity}] (* Carl Woll *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Lorenz H. Menke, Jr., Feb 19 2016
EXTENSIONS
a(11)-a(23) from Lorenz H. Menke, Jr., May 10 2018
STATUS
approved