login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354610
Expansion of e.g.f. exp(f(x) - 1) where f(x) = (1 - x)^x = e.g.f. for A007114.
1
1, 0, -2, -3, 16, 90, -84, -2940, -8672, 95256, 956160, -811800, -75724296, -419150160, 4406562720, 78306555600, 89704074240, -9655388184960, -97621097227200, 657339885653760, 23680733504400000, 119677890314505600, -3528587069869276800, -64401874868363598720
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A007114(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((1-x)^x-1)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j!*sum(k=0, j\2, (-1)^(j-k)*stirling(j-k, k, 1)/(j-k)!)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A012572 A371613 A254382 * A375684 A067848 A269067
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 08 2022
STATUS
approved