login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354608
Number of quadruples (p_1, ..., p_4) of positive integers such that p_{i-1} <= p_i <= n^(i-1).
2
0, 1, 44, 541, 3236, 12885, 39656, 102249, 231736, 476121, 905620, 1618661, 2748604, 4471181, 7012656, 10658705, 15764016, 22762609, 32178876, 44639341, 60885140, 81785221, 108350264, 141747321, 183315176, 234580425, 297274276, 373350069, 465001516, 574681661
OFFSET
0,3
FORMULA
a(n) = (6*n^6-6*n^5+3*n^4+4*n^3-3*n^2+2*n)/6.
G.f.: x*(x^5+89*x^4+338*x^3+254*x^2+37*x+1)/(1-x)^7.
EXAMPLE
a(2) = 44: (1,1,1,1), (1,1,1,2), (1,1,1,3), (1,1,1,4), (1,1,1,5), (1,1,1,6), (1,1,1,7), (1,1,1,8), (1,1,2,2), (1,1,2,3), (1,1,2,4), (1,1,2,5), (1,1,2,6), (1,1,2,7), (1,1,2,8), (1,1,3,3), (1,1,3,4), (1,1,3,5), (1,1,3,6), (1,1,3,7), (1,1,3,8), (1,1,4,4), (1,1,4,5), (1,1,4,6), (1,1,4,7), (1,1,4,8), (1,2,2,2), (1,2,2,3), (1,2,2,4), (1,2,2,5), (1,2,2,6), (1,2,2,7), (1,2,2,8), (1,2,3,3), (1,2,3,4), (1,2,3,5), (1,2,3,6), (1,2,3,7), (1,2,3,8), (1,2,4,4), (1,2,4,5), (1,2,4,6), (1,2,4,7), (1,2,4,8).
MAPLE
a:= n-> (((((6*n-6)*n+3)*n+4)*n-3)*n+2)*n/6:
seq(a(n), n=0..30);
CROSSREFS
Row n=4 of A355576.
Sequence in context: A222514 A282645 A283541 * A339852 A202075 A297680
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 08 2022
STATUS
approved