login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354611
Expansion of e.g.f. 1/(2 - (1 - x)^x).
1
1, 0, -2, -3, 28, 150, -714, -10920, 13392, 1129464, 3694680, -150143400, -1515256104, 22631946480, 525582087408, -2756199995640, -192774443051520, -525316900812480, 75951597634314048, 926307802605928320, -30597152030347651200, -833744424171043728000
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A007114(k) * binomial(n,k) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(2-(1-x)^x)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j!*sum(k=0, j\2, (-1)^(j-k)*stirling(j-k, k, 1)/(j-k)!)*binomial(i, j)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A052848 A357267 A074233 * A356906 A371115 A206592
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 08 2022
STATUS
approved