login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371115
E.g.f. satisfies A(x) = 1 + x*(exp(x*A(x)) - 1).
6
1, 0, 2, 3, 28, 185, 1566, 18277, 218744, 3206961, 52134490, 935303501, 18733723812, 406458491881, 9598660337462, 244471271572725, 6671672053304176, 194631575264393057, 6036199529439919410, 198427339307102272669, 6892068588221322730460
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,k)/(n-2*k+1)!.
From Vaclav Kotesovec, Mar 11 2024: (Start)
E.g.f.: 1 - x - LambertW(-exp((1 - x)*x)*x^2)/x.
a(n) ~ sqrt(2 + r - 2*r^2) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.5356007344755967412570670018666980389185523835846... if the root of the equation exp(1 + r - r^2) * r^2 = 1. (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[1 - x - ProductLog[-E^((1 - x)*x)*x^2]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, stirling(n-k, k, 2)/(n-2*k+1)!);
CROSSREFS
Cf. A371117.
Sequence in context: A074233 A354611 A356906 * A206592 A126266 A219975
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2024
STATUS
approved