The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A371115 E.g.f. satisfies A(x) = 1 + x*(exp(x*A(x)) - 1). 4
 1, 0, 2, 3, 28, 185, 1566, 18277, 218744, 3206961, 52134490, 935303501, 18733723812, 406458491881, 9598660337462, 244471271572725, 6671672053304176, 194631575264393057, 6036199529439919410, 198427339307102272669, 6892068588221322730460 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..20. FORMULA a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,k)/(n-2*k+1)!. From Vaclav Kotesovec, Mar 11 2024: (Start) E.g.f.: 1 - x - LambertW(-exp((1 - x)*x)*x^2)/x. a(n) ~ sqrt(2 + r - 2*r^2) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.5356007344755967412570670018666980389185523835846... if the root of the equation exp(1 + r - r^2) * r^2 = 1. (End) MATHEMATICA nmax = 20; CoefficientList[Series[1 - x - ProductLog[-E^((1 - x)*x)*x^2]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *) PROG (PARI) a(n) = n!*sum(k=0, n\2, stirling(n-k, k, 2)/(n-2*k+1)!); CROSSREFS Cf. A000272, A371116. Cf. A371117. Sequence in context: A074233 A354611 A356906 * A206592 A126266 A219975 Adjacent sequences: A371112 A371113 A371114 * A371116 A371117 A371118 KEYWORD nonn AUTHOR Seiichi Manyama, Mar 11 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 12:07 EDT 2024. Contains 372826 sequences. (Running on oeis4.)