The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A371115 E.g.f. satisfies A(x) = 1 + x*(exp(x*A(x)) - 1). 4
1, 0, 2, 3, 28, 185, 1566, 18277, 218744, 3206961, 52134490, 935303501, 18733723812, 406458491881, 9598660337462, 244471271572725, 6671672053304176, 194631575264393057, 6036199529439919410, 198427339307102272669, 6892068588221322730460 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} Stirling2(n-k,k)/(n-2*k+1)!.
From Vaclav Kotesovec, Mar 11 2024: (Start)
E.g.f.: 1 - x - LambertW(-exp((1 - x)*x)*x^2)/x.
a(n) ~ sqrt(2 + r - 2*r^2) * n^(n-1) / (exp(n) * r^(n+1)), where r = 0.5356007344755967412570670018666980389185523835846... if the root of the equation exp(1 + r - r^2) * r^2 = 1. (End)
MATHEMATICA
nmax = 20; CoefficientList[Series[1 - x - ProductLog[-E^((1 - x)*x)*x^2]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 11 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, stirling(n-k, k, 2)/(n-2*k+1)!);
CROSSREFS
Cf. A371117.
Sequence in context: A074233 A354611 A356906 * A206592 A126266 A219975
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 11 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 12:07 EDT 2024. Contains 372826 sequences. (Running on oeis4.)