login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334886
Numerator of 2*Sum_{k=0..n} binomial(n,k)^2*binomial(n+k,k)^2*(H(n+k)-H(n-k)) where H(n)=Sum_{k=1..n} 1/k.
1
0, 12, 210, 4438, 104825, 13276637, 70543291, 67890874657, 766399019471, 331100496521629, 1938622271127289, 632711558774104687, 18983793845583749117, 7475161875743183448469, 32609977844866666501811, 5014348056100175667015179, 5642363887250888549594351
OFFSET
0,2
COMMENTS
Conjecture: a(p-1) == 0 (mod p^2) for all primes p >= 5 (checked up to p = 499). - Peter Bala, Oct 23 2022
LINKS
Ira Gessel, Some congruences for Apéry numbers, Journal of Number Theory 14 (1982) 362-368. See b(n).
Eric Rowland, Reem Yassawi and Christian Krattenthaler, Lucas congruences for the Apéry numbers modulo p^2, arXiv:2005.04801 [math.NT], 2020. See A'(n).
MAPLE
H:= proc(n) option remember; `if`(n=0, 0, 1/n+H(n-1)) end:
a:= n-> numer(2*add(binomial(n, k)^2*binomial(n+k, k)^2*(H(n+k)-H(n-k)), k=0..n)):
seq(a(n), n=0..17); # Alois P. Heinz, May 14 2020
MATHEMATICA
a[n_] := Numerator[2 * Sum[Binomial[n, k]^2 * Binomial[n + k, k]^2 * (HarmonicNumber[n + k] - HarmonicNumber[n - k]), {k, 0, n}]]; Array[a, 17, 0] (* Amiram Eldar, May 14 2020 *)
PROG
(PARI) H(n) = sum(k=1, n, 1/k);
a(n) = numerator(2*sum(k=0, n, binomial(n, k)^2*binomial(n+k, k)^2*(H(n+k)-H(n-k))));
CROSSREFS
Cf. A001008, A002805, A334887 (denominators).
Sequence in context: A129466 A259516 A342502 * A027399 A266910 A296681
KEYWORD
nonn,frac
AUTHOR
Michel Marcus, May 14 2020
STATUS
approved