OFFSET
1,1
COMMENTS
The projective special linear group PSL(m,q) is the quotient group of SL(m,q) with its center.
Theorem: The group PSL(m,q) is simple except for PSL(2,2) and PSL(2,3).
Exceptional isomorphisms (let "==" denote "isomorphic to"):
a(1) = 6 for PSL(2,2) == GL(2,2) == SL(2,2) == S_3 (see example).
a(2) = 12 for PSL(2,3) == A_4.
a(3) = 60 for PSL(2,4) and for PSL(2,5) with PSL(2,4) == PSL(2,5) == A_5 that is the smallest nonabelian simple group.
a(4) = 168 for PSL(2,7) and for PSL(3,2) with PSL(2,7) == PSL(3,2); PSL(2, 7) is the second smallest nonabelian simple group (see example).
a(5) = 360 for PSL(2,9) == A_6.
a(18) = a(19) = 20160 for PSL(4,2) == A_8 and for PSL(3,4) non-isomorphic to A_8 (see comment in A137863).
Array for order of PSL(m,q):
m\q| 2 3 4 =2^2 5 7
----------------------------------------------------------------------
2 | 6 12 60 60 168
3 | 168 5616 20160 372000 1876896
4 | 20160 6065280 987033600 7254000000 2317591180800
5 | 9999360 237783237120 258492255436800 56653740000000000 #PSL(5,7)
with #PSL(5,7) = 187035198320488089600
LINKS
FORMULA
#PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1).
EXAMPLE
a(1) = #PSL(2,2) = (2^2-1)*2 = 6 and the 6 elements of PSL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 matrices with entries in F_2:
(1 0) (1 1) (1 0) (0 1) (0 1) (1 1)
(0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(4) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and also,
a(4) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168.
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, May 14 2020
STATUS
approved