login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033931
a(n) = lcm(n,n+1,n+2).
5
6, 12, 60, 60, 210, 168, 504, 360, 990, 660, 1716, 1092, 2730, 1680, 4080, 2448, 5814, 3420, 7980, 4620, 10626, 6072, 13800, 7800, 17550, 9828, 21924, 12180, 26970, 14880, 32736, 17952, 39270, 21420, 46620, 25308, 54834, 29640, 63960, 34440
OFFSET
1,1
COMMENTS
Also denominator of h(n+2) - h(n-1), where h(n) is the n-th harmonic number Sum_{k=1..n} 1/k, the numerator is A188386. - Reinhard Zumkeller, Jul 04 2012
FORMULA
a(n) = n*(n+1)*(n+2)*[3-(-1)^n]/4.
From Reinhard Zumkeller, Jul 04 2012: (Start)
a(n) = 6 * A067046(n).
A007947(a(n)) = A078637(n). (End)
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2) (A244009).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 2. (End)
MATHEMATICA
LCM@@@Partition[Range[50], 3, 1] (* or *) LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {6, 12, 60, 60, 210, 168, 504, 360}, 50] (* Harvey P. Dale, Jun 29 2019 *)
PROG
(Haskell)
a033931 n = lcm n (lcm (n + 1) (n + 2)) -- Reinhard Zumkeller, Jul 04 2012
(Magma) [Numerator((n^3-n)/(n^2+1)): n in [2..50]]; // Vincenzo Librandi, Aug 19 2014
(PARI) a(n) = lcm(n^2+n, n+2) \\ Charles R Greathouse IV, Sep 30 2016
KEYWORD
nonn,easy
AUTHOR
STATUS
approved