login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078637
a(n) = rad(n(n+1)(n+2)), where rad(m) is the largest squarefree number dividing m (see A007947).
3
6, 6, 30, 30, 210, 42, 42, 30, 330, 330, 858, 546, 2730, 210, 510, 102, 1938, 570, 3990, 2310, 10626, 1518, 690, 390, 390, 546, 1218, 6090, 26970, 930, 2046, 1122, 39270, 3570, 7770, 4218, 54834, 7410, 15990, 8610, 74046, 19866, 14190, 7590, 32430, 6486
OFFSET
1,1
LINKS
FORMULA
a(n) = rad(n)*rad(n+1)*rad(n+2) if n is odd; or rad(n/2)*rad(n+1)*rad(n/2+1) if n is even. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 13 2004
a(n) = A007947(A033931(n)). - Reinhard Zumkeller, Jul 04 2012
a(n) = A007947(A007531(n+2)). - Amiram Eldar, Jun 30 2022
EXAMPLE
a(3) = rad(3*4*5) = 30.
MAPLE
with(numtheory):rad:=proc(n) local s, i: s:=ifactors(n)[2]: RETURN(mul(s[i][1], i=1..nops(s))): end; seq(rad(n*(n+1)*(n+2)), n=1..60); seq(piecewise(n mod 2=0, rad(n/2)*rad(n+1)*rad(n/2+1), rad(n)*rad(n+1)*rad(n+2)), n=1..60); (C. Ronaldo)
MATHEMATICA
lsf[n_]:=Max[Select[Divisors[n], SquareFreeQ]]; lsf/@Table[n(n+1)(n+2), {n, 50}] (* Harvey P. Dale, Oct 18 2020 *)
a[n_] := Times @@ Union @@ (FactorInteger[#][[;; , 1]] & /@ (n + {0, 1, 2})); Array[a, 50] (* Amiram Eldar, Jun 30 2022 *)
PROG
(PARI) rad(n)=local(p, i); p=factor(n)[, 1]; prod(i=1, length(p), p[i])
for (k=1, 100, print1(rad(k*(k+1)*(k+2))", "))
(Haskell)
a078637 n = a007947 $ product [n..n+2] -- Reinhard Zumkeller, Jul 04 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Dec 12 2002
STATUS
approved