login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = rad(n(n+1)(n+2)), where rad(m) is the largest squarefree number dividing m (see A007947).
3

%I #26 Jun 30 2022 08:36:49

%S 6,6,30,30,210,42,42,30,330,330,858,546,2730,210,510,102,1938,570,

%T 3990,2310,10626,1518,690,390,390,546,1218,6090,26970,930,2046,1122,

%U 39270,3570,7770,4218,54834,7410,15990,8610,74046,19866,14190,7590,32430,6486

%N a(n) = rad(n(n+1)(n+2)), where rad(m) is the largest squarefree number dividing m (see A007947).

%H Reinhard Zumkeller, <a href="/A078637/b078637.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = rad(n)*rad(n+1)*rad(n+2) if n is odd; or rad(n/2)*rad(n+1)*rad(n/2+1) if n is even. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 13 2004

%F a(n) = A007947(A033931(n)). - _Reinhard Zumkeller_, Jul 04 2012

%F a(n) = A007947(A007531(n+2)). - _Amiram Eldar_, Jun 30 2022

%e a(3) = rad(3*4*5) = 30.

%p with(numtheory):rad:=proc(n) local s,i: s:=ifactors(n)[2]: RETURN(mul(s[i][1],i=1..nops(s))): end; seq(rad(n*(n+1)*(n+2)),n=1..60); seq(piecewise(n mod 2=0,rad(n/2)*rad(n+1)*rad(n/2+1),rad(n)*rad(n+1)*rad(n+2)),n=1..60); (C. Ronaldo)

%t lsf[n_]:=Max[Select[Divisors[n],SquareFreeQ]]; lsf/@Table[n(n+1)(n+2),{n,50}] (* _Harvey P. Dale_, Oct 18 2020 *)

%t a[n_] := Times @@ Union @@ (FactorInteger[#][[;; , 1]] & /@ (n + {0, 1, 2})); Array[a, 50] (* _Amiram Eldar_, Jun 30 2022 *)

%o (PARI) rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])

%o for (k=1,100,print1(rad(k*(k+1)*(k+2))","))

%o (Haskell)

%o a078637 n = a007947 $ product [n..n+2] -- _Reinhard Zumkeller_, Jul 04 2012

%Y Cf. A007531, A007947, A033931.

%K nonn

%O 1,1

%A _Jon Perry_, Dec 12 2002