login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078635
Number of partitions of n into perfect powers.
7
1, 1, 1, 1, 2, 2, 2, 2, 4, 5, 5, 5, 7, 8, 8, 8, 12, 14, 15, 15, 19, 21, 22, 22, 28, 33, 35, 37, 43, 48, 50, 52, 62, 70, 75, 79, 92, 100, 105, 109, 126, 140, 148, 157, 177, 194, 202, 211, 237, 261, 276, 290, 324, 351, 370, 384, 424, 462, 489, 514, 562, 609, 640, 670, 728
OFFSET
0,5
LINKS
FORMULA
G.f.: Product_{k=i^j, i>=1, j>=2, excluding duplicates} 1/(1 - x^k). - Ilya Gutkovskiy, Mar 21 2017
EXAMPLE
a(10)=5 since 10 can be written as 9+1, 8+1+1, 4+4+1+1, 4+1+1+1+1+1+1, or 1+1+1+1+1+1+1+1+1+1.
MATHEMATICA
t = Union[Flatten[Table[n^k, {n, 1, 60}, {k, 2, 10}]]]; p[n_] := IntegerPartitions[n, All, t]; Table[p[n], {n, 0, 12}] (*shows partitions*)
a[n_] := Length@p@n; a /@ Range[0, 80]
(* Clark Kimberling, Mar 09 2014 *)
With[{nn = 64}, CoefficientList[Series[Product[1/(1 - x^k), {k, Select[Range[nn], # == 1 || GCD @@ FactorInteger[#][[All, -1]] > 1 &]}], {x, 0, nn}], x]] (* Michael De Vlieger, Sep 06 2022 *)
CROSSREFS
Cf. A001597.
Cf. A131799.
Sequence in context: A230447 A029078 A131799 * A286305 A046768 A363405
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 12 2002
STATUS
approved