The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230447 T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n. 3
 1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The terms in the right hand columns of triangle T(n, k) and the terms in the rows of the square array Tsq(n, k) represent the Kn1p sums of the ‘Races with Ties’ triangle A035317. For the definitions of the Kn1p sums see A180662. This sequence is related to A230448. The first few row sums are: 1, 2, 6, 14, 32, 68, 144, 299, 616, 1258, 2559, 5185, 10478, … . LINKS FORMULA T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n. T(n, k) = sum(A035317(n-i, n-k+i), i = 0..floor(k/2)), n >= 0 and 0 <= k <= n. The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0. Tsq(n, k) = sum(A035317(n+k-i, n+i), i=0..floor(k/2)), n >= 0 and k >= 0. Tsq(n, k) = A080239(2*n+k+1) - sum(A035317(2*n+k-i, i), i=0..n-1). The G.f. generates the terms in the n-th row of the square array Tsq(n, k). G.f.: a(n)/(4*(x-1)) + 1/(4*(x+1)) + (-1)^n*(x+2)/(10*(x^2+1)) - (A000032(2*n+3) + A000032(2*n+2)*x)/(5*(x^2+x-1)) + sum((-1)^(k+1) * A064831(n-k+1)/((x-1)^k), k= 2..n), n >= 0, with a(n) = A064831(n+1) + 2*A064831(n) - 2*A064831(n-1) + A064831(n-2). EXAMPLE The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n. n/k 0   1   2    3    4     5     6     7 ------------------------------------------------ 0|  1 1|  1,  1 2|  2,  2,  2 3|  2,  4,  5,   3 4|  3,  6,  9,   8,   6 5|  3,  9, 16,  17,  14,    9 6|  4, 12, 25,  33,  32,   23,    15 7|  4, 16, 38,  58,  65,   55,    39,   24 The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0. n/k 0   1   2    3    4     5     6     7 ------------------------------------------------ 0|  1,  1,  2,   3,   6,    9,   15,   24 1|  1,  2,  5,   8,  14,   23,   39,   63 2|  2,  4,  9,  17,  32,   55,   94,  157 3|  2,  6, 16,  33,  65,  120,  215,  372 4|  3,  9, 25,  58, 124,  244,  459,  831 5|  3, 12, 38,  96, 220,  464,  924, 1755 6|  4, 16, 54, 150, 371,  835, 1759, 3514 7|  4, 20, 75, 225, 596, 1431, 3191, 6705 MAPLE T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program. T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program. CROSSREFS Cf. (Triangle columns) A008619, A002620, A175287, A080239 Cf. A035317, A230448, A230449, A230135, A080239, A034851, A228570 Sequence in context: A240674 A005866 A125584 * A029078 A131799 A078635 Adjacent sequences:  A230444 A230445 A230446 * A230448 A230449 A230450 KEYWORD nonn,easy,tabl AUTHOR Johannes W. Meijer, Oct 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 09:45 EDT 2021. Contains 343580 sequences. (Running on oeis4.)