login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230444
Primes of the form (p^k + k - 1)/k for prime p and some k > 1.
1
5, 13, 61, 157, 181, 421, 601, 733, 821, 1741, 1861, 2287, 2521, 3121, 5101, 8581, 9661, 9931, 16381, 19609, 19801, 36721, 60901, 71821, 83641, 100801, 106261, 135721, 161881, 163021, 199081, 205441, 218461, 273061, 282001, 337021, 388081, 431521, 491041
OFFSET
1,1
LINKS
EXAMPLE
601 is a term because (7^4 + 4 - 1)/4 = 601 where 7, 601 are both prime,
733 is a term because (13^3 + 3 -1)/3 = 733 where 13, 733 are both prime,
821 is a term because (3^8 + 8 - 1)/8 = 821 where 3, 821 are both prime.
MAPLE
N:= 10^6: # for terms <= N
S:= {}: p:= 1:
do
p:= nextprime(p);
if p^2/2 > N then break fi;
for k from 2 do
v:= (p^k + k - 1)/k;
if v > N then break fi;
if v::integer and isprime(v) then S:= S union {v} fi;
od od:
sort(convert(S, list)); # Robert Israel, Jun 22 2023
PROG
(PARI) isA230444(n) = {isprime(n) || return(0); my(k = 2, v, p); while (1, v = k*n+1-k; if (ispower(v, k, &p) && isprime(p), return(1)); if (v < 2^k, return(0)); k++; ); } \\ Michel Marcus, Oct 19 2013
CROSSREFS
Sequence in context: A071699 A096639 A092773 * A319249 A067756 A284035
KEYWORD
nonn
AUTHOR
Irina Gerasimova, Oct 18 2013
EXTENSIONS
More terms from Michel Marcus, Oct 19 2013
STATUS
approved