login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230441
Number of overpartitions of n minus the number of partitions of n.
8
0, 1, 2, 5, 9, 17, 29, 49, 78, 124, 190, 288, 427, 627, 905, 1296, 1831, 2567, 3563, 4910, 6709, 9112, 12286, 16473, 21953, 29108, 38388, 50398, 65850, 85683, 111020, 143302, 184263, 236113, 301498, 383757, 486909, 615955, 776921, 977263, 1225934, 1533945
OFFSET
0,3
COMMENTS
Number of overpartitions of n that contain at least one overlined part. - Omar E. Pol, Jan 19 2014
LINKS
FORMULA
a(n) = A015128(n) - A000041(n).
EXAMPLE
The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - Omar E. Pol, Jan 19 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> (l->l[2]-l[1])(b(n$2)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 09 2014
STATUS
approved