OFFSET
0,3
COMMENTS
Number of overpartitions of n that contain at least one overlined part. - Omar E. Pol, Jan 19 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
The 14 overpartitions of 4 are
01: [4],
02: [4'],
03: [2, 2],
04: [2', 2],
05: [3, 1],
06: [3', 1],
07: [3, 1'],
08: [3', 1'],
09: [2, 1, 1],
10: [2', 1, 1],
11: [2, 1', 1],
12: [2', 1', 1],
13: [1, 1, 1, 1],
14: [1', 1, 1, 1].
There are 9 overpartitions that contain at least one overlined part, so a(4) = 9. - Omar E. Pol, Jan 19 2014
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0$2],
b(n, i-1) +add((l->l+[0, l[2]])(b(n-i*j, i-1)), j=1..n/i)))
end:
a:= n-> (l->l[2]-l[1])(b(n$2)):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 30 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, {1, 1}, If[i<1, {0, 0}, b[n, i-1] + Sum[Function[ {l}, l+{0, l[[2]]}][b[n-i*j, i-1]], {j, 1, n/i}]]]; a[n_] := Function[{l}, l[[2]]-l[[1]]][b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 28 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 09 2014
STATUS
approved