login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133470
Numbers k > 1 for which floor(b(k)) = floor(b(k-1)), where b(m) = Sum_{j=1..m} (j/(j+2)).
0
2, 5, 9, 17, 29, 49, 81, 135, 225, 371, 614, 1013, 1672, 2757, 4548, 7499, 12365, 20388, 33615, 55423, 91378, 150659, 248395, 409536, 675212, 1113237, 1835419, 3026095, 4989189, 8225783, 13562025, 22360001, 36865410, 60780788, 100210579, 165219314, 272400598, 449112661
OFFSET
1,1
COMMENTS
I conjecture that lim_{n->infinity} a(n)/a(n-1) = sqrt(e). For integers not in the sequence, b(m) = 1 + b(m-1).
EXAMPLE
floor(b(1)) = floor(1/3) = 0;
floor(b(2)) = floor(1/3 + 2/4) = 0;
hence 2 is a term.
PROG
(PARI) A=0; for(n=1, 1000000, B=A; A=B+(n/(n+2)); if(floor(A)-floor(B)-1, print1(n, ", ")))
CROSSREFS
Sequence in context: A034329 A230441 A340668 * A129696 A082281 A285458
KEYWORD
easy,nonn
AUTHOR
Philippe LALLOUET (philip.lallouet(AT)orange.fr), Nov 28 2007
EXTENSIONS
More terms from Hugo Pfoertner, Jul 04 2021
STATUS
approved