The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A133467 a(n) = a(n-1) + 6*a(n-2) for n >= 2, a(0)=1, a(1)=2. 3
 1, 2, 8, 20, 68, 188, 596, 1724, 5300, 15644, 47444, 141308, 425972, 1273820, 3829652, 11472572, 34450484, 103285916, 309988820, 929704316, 2789637236, 8367863132, 25105686548, 75312865340, 225946984628, 677824176668 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,6). FORMULA G.f.: (1+x)/(1-x-6*x^2). a(n) = Sum_{k=0..n+1} A122950(n+1,k)*5^(n+1-k). - Philippe Deléham, Jan 08 2008 a(n) = (4/5)*3^n + (1/5)*(-2)^n, with n >= 0. - Paolo P. Lava, Nov 18 2008 MAPLE Digits := 50: for n from 0 to 40 do round(.8*3^n+.2*(-2)^n) end do; # Matt C. Anderson, Jul 18 2017 MATHEMATICA LinearRecurrence[{1, 6}, {1, 2}, 30] (* Harvey P. Dale, Apr 05 2014 *) PROG (Sage) from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1, 2, 1, 6, lambda n: 0); [next(it) for i in range(0, 29)] # Zerinvary Lajos, Jul 03 2008 CROSSREFS Sequence in context: A081157 A099177 A100097 * A091004 A005559 A001471 Adjacent sequences:  A133464 A133465 A133466 * A133468 A133469 A133470 KEYWORD easy,nonn AUTHOR Philippe Deléham, Jan 03 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)