

A133467


a(n) = a(n1) + 6*a(n2) for n >= 2, a(0)=1, a(1)=2.


3



1, 2, 8, 20, 68, 188, 596, 1724, 5300, 15644, 47444, 141308, 425972, 1273820, 3829652, 11472572, 34450484, 103285916, 309988820, 929704316, 2789637236, 8367863132, 25105686548, 75312865340, 225946984628, 677824176668
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,6).


FORMULA

G.f.: (1+x)/(1x6*x^2).
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*5^(n+1k).  Philippe Deléham, Jan 08 2008
a(n) = (4/5)*3^n + (1/5)*(2)^n, with n >= 0.  Paolo P. Lava, Nov 18 2008


MAPLE

Digits := 50:
for n from 0 to 40 do round(.8*3^n+.2*(2)^n) end do;
# Matt C. Anderson, Jul 18 2017


MATHEMATICA

LinearRecurrence[{1, 6}, {1, 2}, 30] (* Harvey P. Dale, Apr 05 2014 *)


PROG

(Sage) from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1, 2, 1, 6, lambda n: 0); [next(it) for i in range(0, 29)] # Zerinvary Lajos, Jul 03 2008


CROSSREFS

Sequence in context: A081157 A099177 A100097 * A091004 A005559 A001471
Adjacent sequences: A133464 A133465 A133466 * A133468 A133469 A133470


KEYWORD

easy,nonn


AUTHOR

Philippe Deléham, Jan 03 2008


STATUS

approved



