login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133469
a(n) = a(n-1) + 7*a(n-2) for n >= 2, a(0)=1, a(1)=2.
3
1, 2, 9, 23, 86, 247, 849, 2578, 8521, 26567, 86214, 272183, 875681, 2780962, 8910729, 28377463, 90752566, 289394807, 924662769, 2950426418, 9423065801, 30076050727, 96037511334, 306569866423, 978832445761, 3124821510722
OFFSET
0,2
FORMULA
G.f.: (1+x)/(1-x-7*x^2) .
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*6^(n+1-k). - Philippe Deléham, Jan 08 2008
a(n) = ((29 + 3*sqrt(29))/58)*(0.5 + 0.5*sqrt(29))^n + ((29 - 3*sqrt(29))/58)*(0.5 - 0.5*sqrt(29))^n. - Richard Choulet, Nov 20 2008
MAPLE
f:= gfun:-rectoproc({a(n) = a(n-1) + 7*a(n-2), a(0)=1, a(1)=2}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jul 23 2017
MATHEMATICA
LinearRecurrence[{1, 7}, {1, 2}, 30] (* Harvey P. Dale, Dec 09 2013 *)
PROG
(PARI) x='x+O('x^99); Vec((1+x)/(1-x-7*x^2)) \\ Altug Alkan, Jul 23 2017
CROSSREFS
Sequence in context: A115185 A349189 A091107 * A323807 A075714 A101583
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jan 03 2008
STATUS
approved