login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122950 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. 19
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 7, 8, 0, 0, 0, 0, 4, 15, 13, 0, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Skew triangle associated with the Fibonacci numbers.

LINKS

Table of n, a(n) for n=0..88.

H. Fuks and J. M. G. Soto, Exponential convergence to equilibrium in cellular automata asymptotically emulating identity, arXiv preprint arXiv:1306.1189 [nlin.CG], 2013.

FORMULA

Sum_{k=0..n} T(n,k) = A011782(n).

Sum_{n>=k} T(n,k) = A001333(k).

T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).

T(n,n) = Fibonacci(n+1) = A000045(n+1).

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jan 03 2008

G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - Philippe Deléham, Nov 26 2011

EXAMPLE

Triangle begins:

1;

0, 1;

0, 0, 2;

0, 0, 1, 3;

0, 0, 0, 3, 5;

0, 0, 0, 1, 7, 8;

0, 0, 0, 0, 4, 15, 13;

0, 0, 0, 0, 1, 12, 30, 21;

0, 0, 0, 0, 0, 5, 31, 58, 34;

0, 0, 0, 0, 0, 1, 18, 73, 109, 55;

0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89;

0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144;

0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707, 655, 233;

MATHEMATICA

T[0, 0] = T[1, 1] = 1; T[_, 0] = T[_, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[_, _] = 0;

Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)

CROSSREFS

Cf. A055830 (another version).

Sequence in context: A350530 A258850 A182114 * A116489 A166373 A202451

Adjacent sequences: A122947 A122948 A122949 * A122951 A122952 A122953

KEYWORD

nonn,tabl

AUTHOR

Philippe Deléham, Oct 25 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 08:23 EDT 2023. Contains 361419 sequences. (Running on oeis4.)