Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jan 21 2020 00:40:21
%S 1,0,1,0,0,2,0,0,1,3,0,0,0,3,5,0,0,0,1,7,8,0,0,0,0,4,15,13,0,0,0,0,1,
%T 12,30,21,0,0,0,0,0,5,31,58,34,0,0,0,0,0,1,18,73,109,55,0,0,0,0,0,0,6,
%U 54,162,201,89,0,0,0,0,0,0,1,25,145,344,365,144,0,0,0,0,0,0,0,7,85,361,707
%N Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
%C Skew triangle associated with the Fibonacci numbers.
%H H. Fuks and J. M. G. Soto, <a href="http://arxiv.org/abs/1306.1189">Exponential convergence to equilibrium in cellular automata asymptotically emulating identity</a>, arXiv preprint arXiv:1306.1189 [nlin.CG], 2013.
%F Sum_{k=0..n} T(n,k) = A011782(n).
%F Sum_{n>=k} T(n,k) = A001333(k).
%F T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).
%F T(n,n) = Fibonacci(n+1) = A000045(n+1).
%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - _Philippe Deléham_, Jan 03 2008
%F G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - _Philippe Deléham_, Nov 26 2011
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 0, 2;
%e 0, 0, 1, 3;
%e 0, 0, 0, 3, 5;
%e 0, 0, 0, 1, 7, 8;
%e 0, 0, 0, 0, 4, 15, 13;
%e 0, 0, 0, 0, 1, 12, 30, 21;
%e 0, 0, 0, 0, 0, 5, 31, 58, 34;
%e 0, 0, 0, 0, 0, 1, 18, 73, 109, 55;
%e 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89;
%e 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144;
%e 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707, 655, 233;
%t T[0, 0] = T[1, 1] = 1; T[_, 0] = T[_, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[_, _] = 0;
%t Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 29 2018 *)
%Y Cf. A055830 (another version).
%K nonn,tabl
%O 0,6
%A _Philippe Deléham_, Oct 25 2006