The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122948 First row sum of the 5 X 5 matrix M^n, where M = {{0, -1, 0, 0, 0}, {-1, 1, -1, 0, 0}, {0, -1, 1, -1, 0}, {0, 0, -1, 1, -1}, {0, 0, 0, -1, 1}}, n>=0. 1
1, -1, 1, -1, 1, 0, 4, 10, 33, 93, 264, 729, 1999, 5437, 14726, 39757, 107118, 288201, 774672, 2080936, 5587388, 14997840, 40249449, 108001720, 289774494, 777430359, 2085660586, 5595162045, 15009725921, 40264911876, 108013136968, 289750079191, 777264097335, 2085030095791 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
LINKS
FORMULA
a(n)=4a(n-1)-2a(n-2)-5a(n-3)+2a(n-4)+a(n-5) (follows from the minimal polynomial of the matrix M).
G.f.:(2*x-1)*(x^2-3*x+1)/(-1+x^5+2*x^4-5*x^3-2*x^2+4*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
EXAMPLE
a(5)=0 because first row of M^5 is {6,-15,15,-10,4}.
MAPLE
with(linalg): M[1]:=matrix(5, 5, [0, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 1]): for n from 2 to 33 do M[n]:=multiply(M[1], M[n-1]) od: 1, seq(add(M[n][1, j], j=1..5), n=1..33);
a[0]:=1: a[1]:=-1: a[2]:=1: a[3]:=-1: a[4]:=1: for n from 5 to 33 do a[n]:=4*a[n-1]-2*a[n-2]-5*a[n-3]+2*a[n-4]+a[n-5] od: seq(a[n], n=0..33);
MATHEMATICA
M = {{0, -1, 0, 0, 0}, {-1, 1, -1, 0, 0}, {0, -1, 1, -1, 0}, {0, 0, -1, 1, -1}, {0, 0, 0, -1, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]
CROSSREFS
Cf. A098493.
Sequence in context: A052372 A052373 A007716 * A317800 A357799 A149171
KEYWORD
sign
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 24 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 01:06 EDT 2024. Contains 372900 sequences. (Running on oeis4.)