The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122945 Recursive polynomials (p(k, x) = p(k - 1, x) - x^2*p(k - 2, x) ) used to produce a set of matrices a(i,j) at level n that then produce the characteristic polynomials which provide the triangular sequence t(n,m). 2
 1, 1, -1, -1, 1, 1, 1, -1, 0, -1, -1, 1, 1, -2, 1, 1, -1, -2, 3, -1, -1, -1, 1, 3, -4, 0, 3, 1, 1, -1, -4, 5, 2, -6, 2, -1, -1, 1, 5, -6, -5, 10, -2, -4, 1, 1, -1, -6, 7, 9, -15, 0, 10, -3, -1, -1, 1, 7, -8, -14, 21, 5, -20, 5, 5, 1, 1, -1, -8, 9, 20, -28, -14, 35, -5, -15, 4, -1, -1, 1, 9, -10, -27, 36, 28, -56, 0, 35, -9, -6, 1, 1, -1, -10, 11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,14 COMMENTS It was a real problem getting the matrices to agree with the polynomials: I was getting shift function polynomials!) 1 X 1 {{1}} 2 X 2 {{0, 1}, {1, -1}} 3 X 3 {{0, 1, 0}, {0, 0, 1}, {1, -1, 0}} 4 X 4 {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, -1, -1, 2}} 5 X 5 {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {1, -1, -2, 3, -1}} LINKS Table of n, a(n) for n=1..95. FORMULA p(k, x) = p(k - 1, x) - x^2*p(k - 2, x) p(k,n)->t0(i,j) t0(i,j)->a[i,j) a(i,j)->p'(n,x) p'(n,k)->t(n,m) EXAMPLE Input triangular sequence from the recurvise polynomials: {{1}, {-1,1}, {-1, 1, -1}, {-1, 1, 0, -1}, {-1, 1, 1, -2, 1}, {-1, 1, 2, -3, 1, 1} Output triangular sequence from characteristic polynomials of matrices: {1}, {1, -1}, {-1, 1, 1}, {1, -1, 0, -1}, {-1, 1, 1, -2, 1}, {1, -1, -2, 3, -1, -1} MATHEMATICA p[0, x] = 1; p[1, x] = x - 1; p[k_, x_] := p[k, x] = p[k - 1, x] - x^2*p[k - 2, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 20}] ; An[d_] := Table[If[n == d, -w[[n]][[m]], If[m == n, 1, 0]], {n, 2, d}, {m, 1, d - 1}]; Table[An[d], {d, 2, 19}] b = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], \ {d, 2, 19}]]; Flatten[%] CROSSREFS Sequence in context: A175069 A245563 A356917 * A209972 A205573 A119338 Adjacent sequences: A122942 A122943 A122944 * A122946 A122947 A122948 KEYWORD tabl,uned,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 06:14 EDT 2024. Contains 372760 sequences. (Running on oeis4.)