The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122943 Odd numbers n ordered by n/2^BigOmega(n), where BigOmega(n) is the number of prime divisors of n with repetition. 3
 1, 3, 9, 5, 27, 7, 15, 81, 21, 11, 45, 25, 13, 243, 63, 33, 135, 17, 35, 75, 19, 39, 729, 23, 189, 49, 99, 405, 51, 105, 55, 225, 57, 29, 117, 31, 125, 65, 2187, 69, 567, 147, 37, 297, 1215, 153, 77, 315, 41, 165, 675, 85, 171, 43, 87, 175, 351, 91, 93, 375, 47, 95, 195 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is the limit of the sequence of largest odd factors of the k-almost primes as k -> infinity. The location of 3^k in this sequence is A078843(k). LINKS T. D. Noe, Table of n, a(n) for n = 1..1065 FORMULA A101695(n) = a(n) * 2^(n - BigOmega(a(n))). a(n) = A101695(n) / 2^A007814(A101695(n)) = A000265(A101695(n)). MATHEMATICA AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* from Eric Weisstein, Feb 07 2006 *); AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; f[n_] := Block[{ kap = AlmostPrime[20, n]}, kap / 2^IntegerExponent[ kap, 2]]; Array[f, 64] (* or *) f[n_] := n/2^PrimeOmega[n]; Take[2 Ordering[ Table[ f[ 2n - 1], {n, 1100}]] - 1, 63] (* Robert G. Wilson v, Feb 08 2011 *) f[n_] := n/2^PrimeOmega[n]; nn=9; t = Select[Table[{f[2 n - 1], 2 n - 1}, {n, 3^nn/2 + 1}], #[[1]] <= f[3^nn] &]; Transpose[Sort[t]][[2]] CROSSREFS Cf. A001222, A101695, A078841, A078840, A000265, A007814. Sequence in context: A103934 A186814 A077384 * A276148 A182946 A193993 Adjacent sequences:  A122940 A122941 A122942 * A122944 A122945 A122946 KEYWORD nonn AUTHOR Franklin T. Adams-Watters, Oct 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 06:53 EDT 2021. Contains 343580 sequences. (Running on oeis4.)