OFFSET
1,1
COMMENTS
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000 (first 229 terms from Robert G. Wilson v)
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
Conjecture: lim_{ n->inf.} a(n+1)/a(n) = 2. - Robert G. Wilson v, Oct 07 2007, Nov 13 2007
Stronger conjecture: a(n)/(n * 2^n) is polylogarithmic in n. That is, there exist real numbers b < c such that (log n)^b < a(n)/(n * 2^n) < (log n)^c for large enough n. Probably b and c can be chosen close to 0. - Charles R Greathouse IV, Aug 28 2012
EXAMPLE
MAPLE
A101695 := proc(n)
local s, a ;
s := 0 ;
for a from 2^n do
if numtheory[bigomega](a) = n then
s := s+1 ;
if s = n then
return a;
end if;
end if;
end do:
end proc: # R. J. Mathar, Aug 09 2012
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
PROG
(Python)
from math import prod, isqrt
from sympy import primerange, primepi, integer_nthroot
def A101695(n):
if n == 1: return 2
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Jonathan Vos Post, Dec 12 2004
EXTENSIONS
a(21)-a(30) from Robert G. Wilson v, Feb 11 2006
a(12) corrected by N. J. A. Sloane, Nov 23 2007
STATUS
approved