The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078841 Main diagonal of the table of k-almost primes (A078840): a(n) = (n+1)-st integer that is an n-almost prime. 17
 1, 3, 9, 20, 54, 112, 240, 648, 1344, 2816, 5760, 12800, 26624, 62208, 129024, 270336, 552960, 1114112, 2293760, 4915200, 9961472, 20447232, 47775744, 96468992, 198180864, 411041792, 830472192, 1698693120, 3422552064, 7046430720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A k-almost prime is a positive integer that has exactly k prime factors counted with multiplicity. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..228. Eric Weisstein's World of Mathematics, Almost Prime. FORMULA Conjecture: Lim as n->inf. of a(n+1)/a(n) = 2. - Robert G. Wilson v, Nov 13 2007 EXAMPLE a(0) = 1 since one is the multiplicative identity, a(1) = 2nd 1-almost prime is the second prime number = A000040(2) = 3, a(2) = 3rd 2-almost prime = 3rd semiprime = A001358(3) = 9 = {3*3}. a(3) = 4th 3-almost prime = A014612(4) = 20 = {2*2*5}. a(4) = 5th 4-almost prime = A014613(5) = 54 = {2*3*3*3}, a(5) = 6th 5-almost prime = A014614(6) = 112 = {2*2*2*2*7}, .... MATHEMATICA f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[ t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Table[ t[[n, n + 1]], {n, 30}] (* Robert G. Wilson v, Feb 11 2006 *) AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n-1, n]], {n, 30}]; lst (* Robert G. Wilson v, Nov 13 2007 *) CROSSREFS Cf. A078840, A078842, A078843, A078844, A078445, A078846, A101695. Sequence in context: A026566 A147356 A147416 * A147387 A146267 A151420 Adjacent sequences: A078838 A078839 A078840 * A078842 A078843 A078844 KEYWORD nonn AUTHOR Benoit Cloitre and Paul D. Hanna, Dec 10 2002 EXTENSIONS a(14)-a(29) from Robert G. Wilson v, Feb 11 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 17:49 EDT 2023. Contains 365666 sequences. (Running on oeis4.)