login
A078839
Numbers k such that the binary expansion of 3^k has the same number of 0's and 1's.
6
2, 12, 69, 73, 150, 184, 252, 328, 339, 464, 483, 541, 729, 747, 758, 763, 1014, 1047, 1090, 1094, 1158, 1264, 1359, 1601, 1679, 1693, 1698, 1780, 2368, 2641, 2815, 3292, 3393, 3606, 3682, 3857, 3909, 3919, 3963, 4087, 4111, 4289, 4314, 5017, 5398, 5466
OFFSET
1,1
COMMENTS
Does the limit of a(n)/n^2 as n -> infinity exist?
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..1600 (terms 1..1000 from Amiram Eldar)
Hugo Pfoertner, Plot of a(n)/n^2 using Plot 2.
MATHEMATICA
balanced[n_] := Module[{d=IntegerDigits[n, 2]}, Plus@@d==Length[d]/2]; Select[Range[0, 5500], balanced[3^# ]&]
PROG
(PARI) is(n)=hammingweight(n=3^n)==hammingweight(bitneg(n, #binary(n))) \\ Charles R Greathouse IV, Mar 29 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Dec 06 2002
STATUS
approved