login
A026306
a(n) = T(2n,n+1), where T is the array in A026300.
0
0, 2, 12, 69, 392, 2235, 12804, 73710, 426192, 2473704, 14405800, 84137130, 492652824, 2891110235, 16999928820, 100136858625, 590778928800, 3490370847876, 20647839813048, 122287764072938, 725023671281520, 4302720916638417
OFFSET
0,2
FORMULA
g.f. A(x)=(1/B(x))'-1, where B(x) g.f. of A006605.
a(n) = n*(Sum_{j=0..2*n+1} binomial(j,-3*n+2*j-1)*binomial(2*n+1,j)))/(2*n+1) - Vladimir Kruchinin, May 15 2014
EXAMPLE
G.f. = 2*x + 12*x^2 + 69*x^3 + 392*x^4 + 2235*x^5 + 12804*x^6 + 73710*x^7 + ...
PROG
(Maxima)
a(n):=(n*sum(binomial(j, -3*n+2*j-1)*binomial(2*n+1, j), j, 0, 2*n+1))/(2*n+1); /* Vladimir Kruchinin, May 15 2014 */
CROSSREFS
Sequence in context: A245854 A078839 A243771 * A116398 A001542 A059229
KEYWORD
nonn,changed
STATUS
approved