The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078843 Where 3^n occurs in n-almost-primes, starting at a(0)=1. 20
 1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Max Alekseyev, Table of n, a(n) for n = 0..50 Eric Weisstein's World of Mathematics, Almost Prime. FORMULA a(n) = a(n-1) + appi3(n-k, floor(3^n/2^k)), where k = ceiling(n*c) with c = log(5/3)/log(5/2) = 0.55749295065024006729857073190835923443... and appi3(k,n) is the number of k-almost-primes not divisible by 3 and not exceeding n. - Max Alekseyev, Jan 06 2008 EXAMPLE a(3) = 5 since 3^3 is the 5th 3-almost-prime: {8,12,18,20,27,...}. MATHEMATICA AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein Feb 07 2006 *) Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *) PROG (PARI) a(n)=sum(i=1, 3^n, if(bigomega(i)-n, 0, 1)) (PARI) { appi(k, n, m=2) = local(r=0); if(k==0, return(1)); if(k==1, return(primepi(n))); forprime(p=m, floor(sqrtn(n, k)+1e-20), r+=appi(k-1, n\p, p)-(k==2)*(primepi(p)-1)); r } { appi3(k, n) = appi(k, n) - if(k>=1, appi(k-1, n\3)) } a=1; for(n=1, 50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k, 3^n\2^k); print1(a, ", ")) \\ Max Alekseyev, Jan 06 2008 CROSSREFS Cf. A078840, A078841, A078842, A078844, A078845, A078846. Sequence in context: A004692 A094926 A225391 * A018068 A120400 A217283 Adjacent sequences:  A078840 A078841 A078842 * A078844 A078845 A078846 KEYWORD nonn AUTHOR Benoit Cloitre and Paul D. Hanna, Dec 10 2002 EXTENSIONS a(14)-a(37) from Robert G. Wilson v, Feb 09 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 16:18 EST 2020. Contains 338640 sequences. (Running on oeis4.)