login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078843
Where 3^n occurs in n-almost primes, starting at a(0)=1.
22
1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Almost Prime.
FORMULA
a(n) = a(n-1) + appi3(n-k, floor(3^n/2^k)), where k = ceiling(n*c) with c = log(5/3)/log(5/2) = 0.55749295065024006729857073190835923443... and appi3(k,n) is the number of k-almost primes not divisible by 3 and not exceeding n. - Max Alekseyev, Jan 06 2008
EXAMPLE
a(3) = 5 since 3^3 is the 5th 3-almost-prime: 8,12,18,20,27,....., A014612.
MATHEMATICA
AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *)
PROG
(PARI) a(n)=sum(i=1, 3^n, if(bigomega(i)-n, 0, 1))
(PARI)
{ appi(k, n, m=2) = local(r=0);
if(k==0, return(1));
if(k==1, return(primepi(n)));
forprime(p=m, floor(sqrtn(n, k)+1e-20),
r+=appi(k-1, n\p, p)-(k==2)*(primepi(p)-1));
r }
{ appi3(k, n) = appi(k, n) - if(k>=1, appi(k-1, n\3)) }
a=1; for(n=1, 50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k, 3^n\2^k); print1(a, ", "))
\\ Max Alekseyev, Jan 06 2008
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A078843(n):
def almostprimepi(n, k):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
return almostprimepi(3**n, n) if n else 1 # Chai Wah Wu, Sep 01 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre and Paul D. Hanna, Dec 10 2002
EXTENSIONS
a(14)-a(37) from Robert G. Wilson v, Feb 09 2006
STATUS
approved