The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078843 Where 3^n occurs in n-almost primes, starting at a(0)=1. 20
 1, 2, 3, 5, 8, 14, 23, 39, 64, 103, 169, 269, 427, 676, 1065, 1669, 2628, 4104, 6414, 10023, 15608, 24281, 37733, 58503, 90616, 140187, 216625, 334527, 516126, 795632, 1225641, 1886570, 2901796, 4460359, 6851532, 10518476, 16138642, 24748319 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Max Alekseyev, Table of n, a(n) for n = 0..50 Eric Weisstein's World of Mathematics, Almost Prime. FORMULA a(n) = a(n-1) + appi3(n-k, floor(3^n/2^k)), where k = ceiling(n*c) with c = log(5/3)/log(5/2) = 0.55749295065024006729857073190835923443... and appi3(k,n) is the number of k-almost primes not divisible by 3 and not exceeding n. - Max Alekseyev, Jan 06 2008 EXAMPLE a(3) = 5 since 3^3 is the 5th 3-almost-prime: 8,12,18,20,27,....., A014612. MATHEMATICA AlmostPrimePi[k_Integer /; k > 1, n_] := Module[{a, i}, a[0] = 1; Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]; (* Eric W. Weisstein, Feb 07 2006 *) Table[ AlmostPrimePi[n, 3^n], {n, 2, 37}] (* Robert G. Wilson v, Feb 09 2006 *) PROG (PARI) a(n)=sum(i=1, 3^n, if(bigomega(i)-n, 0, 1)) (PARI) { appi(k, n, m=2) = local(r=0); if(k==0, return(1)); if(k==1, return(primepi(n))); forprime(p=m, floor(sqrtn(n, k)+1e-20), r+=appi(k-1, n\p, p)-(k==2)*(primepi(p)-1)); r } { appi3(k, n) = appi(k, n) - if(k>=1, appi(k-1, n\3)) } a=1; for(n=1, 50, k=ceil(n*log(5/3)/log(5/2)); a+=appi3(n-k, 3^n\2^k); print1(a, ", ")) \\ Max Alekseyev, Jan 06 2008 CROSSREFS Cf. A078840, A078841, A078842, A078844, A078845, A078846. Sequence in context: A004692 A094926 A225391 * A018068 A120400 A217283 Adjacent sequences:  A078840 A078841 A078842 * A078844 A078845 A078846 KEYWORD nonn AUTHOR Benoit Cloitre and Paul D. Hanna, Dec 10 2002 EXTENSIONS a(14)-a(37) from Robert G. Wilson v, Feb 09 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 02:41 EDT 2022. Contains 354913 sequences. (Running on oeis4.)