login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046310
Numbers that are divisible by exactly 8 primes counting multiplicity.
52
256, 384, 576, 640, 864, 896, 960, 1296, 1344, 1408, 1440, 1600, 1664, 1944, 2016, 2112, 2160, 2176, 2240, 2400, 2432, 2496, 2916, 2944, 3024, 3136, 3168, 3240, 3264, 3360, 3520, 3600, 3648, 3712, 3744, 3968, 4000, 4160, 4374, 4416, 4536, 4704, 4736
OFFSET
1,1
COMMENTS
Also called 8-almost primes. Products of exactly 8 primes (not necessarily distinct). Any 8-almost prime can be represented in several ways as a product of two 4-almost primes A014613 and in several ways as a product of four semiprimes A001358. - Jonathan Vos Post, Dec 11 2004
Odd terms are in A046321; first odd term is a(64)=6561=3^8. - Zak Seidov, Feb 08 2016
LINKS
Eric Weisstein's World of Mathematics, Reference
FORMULA
Product p_i^e_i with Sum e_i = 8.
a(n) ~ 5040n log n / (log log n)^7. - Charles R Greathouse IV, May 06 2013
a(n) = A078840(8,n). - R. J. Mathar, Jan 30 2019
MAPLE
A046310 := proc(n)
option remember;
if n = 1 then
2^8 ;
else
for a from procname(n-1)+1 do
if numtheory[bigomega](a) = 8 then
return a;
end if;
end do:
end if;
end proc:
seq(A046310(n), n=1..30) ; # R. J. Mathar, Dec 21 2018
MATHEMATICA
Select[Range[1600], Plus @@ Last /@ FactorInteger[ # ] == 8 &] (* Vladimir Joseph Stephan Orlovsky, Apr 23 2008 *)
Select[Range[5000], PrimeOmega[#]==8&] (* Harvey P. Dale, Apr 19 2011 *)
PROG
(PARI) is(n)=bigomega(n)==8 \\ Charles R Greathouse IV, Mar 21 2013
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046310(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 8)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A046309, A120049 (number of 8-almost primes <= 10^n).
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), this sequence (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20).
Cf. A046321.
Sequence in context: A046309 A036332 A114987 * A115176 A299156 A221259
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved