The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299156 Numbers k such that k*(k+1) divides tribonacci(k) (A000073(k)). 1
 1, 256, 397, 1197, 8053, 8736, 9901, 32173, 33493, 33757, 38461, 48757, 56101, 57073, 64153, 76561, 79693, 87517, 100608, 102217, 105253, 105601, 105913, 105997, 107713, 108553, 110976, 116293, 123121, 131437, 138517, 143137, 147541, 151237, 156601, 171253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A subsequence of A232570. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Alois P. Heinz) EXAMPLE tribonacci(256) = 10285895715599251294835119279496333059462348558276025598603904254464 = 256 * 257 * 156339611436029476149609668037091638184921397104146789862048642. MAPLE with(LinearAlgebra[Modular]): T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>,     <0|0|1>, <1|1|1>>, float[8]), n)[1, 3]: a:= proc(n) option remember; local i, k, ok;       if n=1 then 1 else         for k from 1+a(n-1) do ok:= true;           for i in ifactors(k*(k+1))[2] while ok do             ok:= is(T(k, i[1]^i[2])=0)           od; if ok then break fi         od; k       fi     end: seq(a(n), n=1..10);  # Alois P. Heinz, Feb 06 2018 MATHEMATICA a = b = 0; c = d = 1; k = 2; lst = {1}; While[k < 171255, If[ Mod[c, k (k + 1)] == 0, AppendTo[lst, k]]; a = b; b = c; c = d; d = a + b + c; k++] (* Robert G. Wilson v, Feb 07 2018 *) CROSSREFS Cf. A000073, A217738, A232570, A274518. Sequence in context: A114987 A046310 A115176 * A221259 A223693 A223064 Adjacent sequences:  A299153 A299154 A299155 * A299157 A299158 A299159 KEYWORD nonn AUTHOR Seiichi Manyama, Feb 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 02:33 EDT 2021. Contains 346367 sequences. (Running on oeis4.)