login
A299156
Numbers k such that k*(k+1) divides tribonacci(k) (A000073(k)).
1
1, 256, 397, 1197, 8053, 8736, 9901, 32173, 33493, 33757, 38461, 48757, 56101, 57073, 64153, 76561, 79693, 87517, 100608, 102217, 105253, 105601, 105913, 105997, 107713, 108553, 110976, 116293, 123121, 131437, 138517, 143137, 147541, 151237, 156601, 171253
OFFSET
1,2
COMMENTS
A subsequence of A232570.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Alois P. Heinz)
EXAMPLE
tribonacci(256) = 10285895715599251294835119279496333059462348558276025598603904254464 = 256 * 257 * 156339611436029476149609668037091638184921397104146789862048642.
MAPLE
with(LinearAlgebra[Modular]):
T:= (n, m)-> MatrixPower(m, Mod(m, <<0|1|0>,
<0|0|1>, <1|1|1>>, float[8]), n)[1, 3]:
a:= proc(n) option remember; local i, k, ok;
if n=1 then 1 else
for k from 1+a(n-1) do ok:= true;
for i in ifactors(k*(k+1))[2] while ok do
ok:= is(T(k, i[1]^i[2])=0)
od; if ok then break fi
od; k
fi
end:
seq(a(n), n=1..10); # Alois P. Heinz, Feb 06 2018
MATHEMATICA
a = b = 0; c = d = 1; k = 2; lst = {1}; While[k < 171255, If[ Mod[c, k (k + 1)] == 0, AppendTo[lst, k]]; a = b; b = c; c = d; d = a + b + c; k++] (* Robert G. Wilson v, Feb 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 04 2018
STATUS
approved