login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120049
Number of 8-almost primes less than or equal to 10^n.
12
0, 0, 0, 7, 105, 1418, 17572, 207207, 2367507, 26483012, 291646797, 3173159326, 34192782745, 365561221293, 3882841742380
OFFSET
0,4
EXAMPLE
There are 7 eight-almost primes up to 1000: 256, 384, 576, 640, 864, 896 & 960.
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[AlmostPrimePi[8, 10^n], {n, 12}]
PROG
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A120049(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
return int(sum(primepi(10**n//prod(c[1] for c in a))-a[-1][0] for a in g(10**n, 0, 1, 1, 8))) # Chai Wah Wu, Aug 23 2024
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Feb 07 2006
EXTENSIONS
a(13) and a(14) from Robert G. Wilson v, Jan 07 2007
Example corrected by Harvey P. Dale, Aug 13 2018
STATUS
approved