login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116382
Riordan array (1/sqrt(1-4*x^2), (1-2*x^2*c(x^2))*(x^2*c(x^2))/(x*(1-x-x^2*c(x^2)))) where c(x) is the g.f. of A000108.
14
1, 0, 1, 2, 1, 1, 0, 3, 2, 1, 6, 4, 5, 3, 1, 0, 10, 10, 8, 4, 1, 20, 15, 21, 19, 12, 5, 1, 0, 35, 42, 42, 32, 17, 6, 1, 70, 56, 84, 92, 77, 50, 23, 7, 1, 0, 126, 168, 192, 180, 131, 74, 30, 8, 1, 252, 210, 330, 405, 400, 326, 210, 105, 38, 9, 1
OFFSET
0,4
COMMENTS
Row sums are A116383. Diagonal sums are A116384.
First column has e.g.f. Bessel_I(0,2*x) (A000984 with interpolated zeros).
Second column has e.g.f. Bessel_I(1,2*x) + Bessel_I(2,2*x) (A037952).
Third column has e.g.f. Bessel_I(2,2*x) + 2*Bessel_I(3,2*x) + Bessel_I(4,2*x) (A116385).
A binomial-Bessel triangle: column k has e.g.f. Sum_{j=0..k} C(k,j) * Bessel_I(k+j,2*x).
FORMULA
Riordan array (1/sqrt(1-4*x^2), sqrt(1-4*x^2)*(1-sqrt(1-4*x^2))/(x-2*x^2 + x*sqrt(1-4*x^2))).
Number triangle T(n,k) = Sum{j=0..n} (-1)^(n-j)* C(n,j)*Sum_{i=0..j} C(j,i-k)*C(i,j-i).
EXAMPLE
Triangle begins
1;
0, 1;
2, 1, 1;
0, 3, 2, 1;
6, 4, 5, 3, 1;
0, 10, 10, 8, 4, 1;
20, 15, 21, 19, 12, 5, 1;
0, 35, 42, 42, 32, 17, 6, 1;
70, 56, 84, 92, 77, 50, 23, 7, 1;
0, 126, 168, 192, 180, 131, 74, 30, 8, 1;
252, 210, 330, 405, 400, 326, 210, 105, 38, 9, 1;
MATHEMATICA
T[n_, k_] := Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2018 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, (-1)^(n-j)*binomial(n, j)*sum(m=0, j, binomial(j, m-k)*binomial(m, j-m) ))}; \\ G. C. Greubel, May 22 2019
(Magma)
T:= func< n, k | (&+[(-1)^(n-j)*Binomial(n, j)*(&+[Binomial(j, m-k)* Binomial(m, j-m): m in [0..j]]): j in [0..n]]) >;
[[T(n, k): k in [0..n]]: n in [0..10]] // G. C. Greubel, May 22 2019
(Sage)
def T(n, k): return sum((-1)^(n-j)*binomial(n, j)*sum(binomial(j, m-k)*binomial(m, j-m) for m in (0..j)) for j in (0..n))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 22 2019
(GAP) Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n, j)*Sum([0..j], m-> Binomial(j, m-k)*Binomial(m, j-m) ))))) # G. C. Greubel, May 22 2019
CROSSREFS
Sequence in context: A288166 A126258 A235501 * A050606 A352521 A277721
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 12 2006
STATUS
approved