login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288166
Expansion of x^5/((1-x^5)*(1-x^4)*(1-x^8)*(1-x^12)*(1-x^16)).
3
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 1, 5, 3, 2, 1, 7, 5, 3, 2, 10, 7, 5, 3, 13, 10, 7, 5, 18, 13, 10, 7, 23, 18, 13, 10, 30, 23, 18, 13, 37, 30, 23, 18, 47, 37, 30, 23, 57, 47, 37, 30, 70, 57, 47, 37, 84, 70, 57, 47, 101, 84, 70, 57, 119
OFFSET
0,14
LINKS
Daniel Panario, Murat Sahin and Qiang Wang, Generalized Alcuin’s Sequence, The Electronic Journal of Combinatorics, Volume 19, Issue 4 (2012).
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1).
FORMULA
a(n) = p_5(n/4) if n == 0 mod 4,
a(n) = p_5((n+15)/4) if n == 1 mod 4,
a(n) = p_5((n+10)/4) if n == 2 mod 4,
a(n) = p_5((n+5)/4) if n == 3 mod 4,
where p_5(n) is the number of partitions of n into exactly 5 parts.
EXAMPLE
a(56) = p_5(56/4) = p_5(14) = A001401(9) = 23,
a(57) = p_5((57+15)/4) = p_5(18) = A001401(13) = 57,
a(58) = p_5((58+10)/4) = p_5(17) = A001401(12) = 47,
a(59) = p_5((59+5)/4) = p_5(16) = A001401(11) = 37,
a(60) = p_5(60/4) = p_5(15) = A001401(10) = 30,
a(61) = p_5((61+15)/4) = p_5(19) = A001401(14) = 70,
a(62) = p_5((62+10)/4) = p_5(18) = A001401(13) = 57,
a(63) = p_5((63+5)/4) = p_5(17) = A001401(12) = 47.
MATHEMATICA
CoefficientList[Series[x^5/((1-x^4)(1-x^5)(1-x^8)(1-x^12)(1-x^16)), {x, 0, 120}], x] (* or *) LinearRecurrence[ {0, 0, 0, 1, 1, 0, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, -1, -1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 3, 2, 1, 1, 5, 3, 2, 1, 7, 5, 3, 2, 10, 7, 5, 3, 13, 10, 7, 5, 18, 13, 10, 7, 23, 18, 13, 10}, 120] (* Harvey P. Dale, Apr 22 2019 *)
CROSSREFS
Cf. A001401.
Cf. A005044 (k=3), A288165 (k=4), this sequence (k=5).
Sequence in context: A279209 A087117 A029340 * A126258 A235501 A116382
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 06 2017
STATUS
approved