login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288163
Integers related to the half moments of Rvachëv function.
0
1, 1, 5, 84, 4004, 494760, 150120600, 107969547840, 179605731622464, 678695382464158080, 5745964983105758544000, 107798142804281290451059200, 4441362930723337358985334172160, 398854836980938754158182857661404160, 77576833096847783279235708819073596288000
OFFSET
0,3
COMMENTS
These numbers determine the half moments of the Rvachëv function. The Rvachëv function is related to the Fabius function, up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1.
LINKS
J. Arias de Reyna, Arithmetic of the Fabius function, arXiv:1702.06487 [math.NT], 2017.
FORMULA
a(n) = (n+1)!*Product_{k=1..n}(2^k-1)*d(n) where d(n) are the rationals defined by the recurrence d(0)=1; d(n)=Sum_{k=0..n-1}[binomial(n+1,k)d(k)]/((n+1)*(2^n-1)) (cf. A288161).
MATHEMATICA
d[0] = 1;
d[n_] := d[n] =
Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
a[n_] := (n + 1)! Product[(2^k - 1), {k, 1, n}] d[n];
Table[a[n], {n, 0, 14}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Juan Arias-de-Reyna, Jun 06 2017
STATUS
approved