login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287936
Numerator of moments of Rvachëv function up(x).
4
1, 1, 19, 583, 132809, 46840699, 4068990560161, 1204567303451311, 4146897304424408411, 18814360006695807527868793, 21431473463327429953796293981397, 911368783375270623395381542054690099, 3805483535214088799368825731508632105336401423
OFFSET
0,3
COMMENTS
a(n)/A287937(n) is equal to the integral of t^(2n) * up(t), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function.
LINKS
J. Arias de Reyna, Arithmetic of the Fabius function, arXiv:1702.06487 [math.NT], 2017.
FORMULA
Recurrence c(0)=1, c(n)=Sum_{k=0..n-1}(binomial(2n+1,2k) c_k)/((2n+1)*(2^(2n)-1)), where c(n)=a(n)/A287937(n).
MATHEMATICA
c[0] = 1;
c[n_] := c[n] =
Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1));
Table[Numerator[c[n]], {n, 0, 30}]
CROSSREFS
Sequence in context: A284111 A142023 A075879 * A226584 A180841 A266052
KEYWORD
nonn,frac
AUTHOR
Juan Arias-de-Reyna, Jun 03 2017
STATUS
approved