login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116381
Number of compositions of n which are prime when concatenated and read as a decimal string.
2
0, 2, 1, 3, 7, 0, 29, 27, 0, 90, 236, 0, 758, 1039, 0, 3949, 9325, 0, 32907, 51243, 0, 184458, 426372, 0, 1552101, 2537233, 0, 9526385, 21117111, 0, 78112040, 134568638, 0, 505079269, 1096046406, 0
OFFSET
1,2
EXAMPLE
The eight compositions of 4 are 4,13,31,22,112,121,211,1111 of which 3 {13,31,211} are primes.
Primes for n=11 are: 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 641, 821, 911, 1163, 1181, ..., 131111111, 212111111, 1111111121, 1111211111, 1121111111.
MATHEMATICA
f[n_] := If[n > 5 && Mod[n, 3] == 0, 0, Block[{len = PartitionsP@ n, p = IntegerPartitions[n], c = 0}, Do[c = c + Length@ Select[ FromDigits /@ Join @@@ IntegerDigits /@ Permutations@ p[[i]], PrimeQ@# &], {i, len}]; c]]; Array[f, 28] (* Robert G. Wilson v, Aug 03 2012 *)
PROG
(Python)
from sympy import isprime
from sympy.utilities.iterables import partitions, multiset_permutations
def a(n):
c = 0
for p in partitions(n):
plst = [k for k in p for _ in range(p[k])]
s = sum(sum(map(int, str(pi))) for pi in plst)
if s != 3 and s%3 == 0: continue
for m in multiset_permutations(plst):
if isprime(int("".join(map(str, m)))):
c += 1
return c
print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 19 2022
(Python)
from collections import Counter
from sympy.utilities.iterables import partitions, multiset_permutations
from sympy import isprime
def A116381(n): return sum(1 for p in partitions(n) for a in multiset_permutations(Counter(p).elements()) if isprime(int(''.join(str(d) for d in a)))) if n==3 or n%3 else 0 # Chai Wah Wu, Feb 21 2024
CROSSREFS
Cf. A069869, A069870; not the same as A073901.
Sequence in context: A321651 A326308 A073901 * A176120 A369595 A220621
KEYWORD
base,nonn,more
AUTHOR
Robert G. Wilson v, Feb 06 2006
EXTENSIONS
a(29)-a(33) from Michael S. Branicky, Nov 19 2022
a(34)-a(36) from Michael S. Branicky, Jul 10 2023
STATUS
approved