login
A176120
Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!.
5
1, 1, 2, 1, 3, 7, 1, 4, 13, 34, 1, 5, 21, 73, 209, 1, 6, 31, 136, 501, 1546, 1, 7, 43, 229, 1045, 4051, 13327, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114
OFFSET
0,3
COMMENTS
The number of ways of placing any number k = 0, 1, ..., min(n,m) of non-attacking rooks on an n X m chessboard. - R. J. Mathar, Dec 19 2014
Let a be a partial permutation in S the symmetric inverse semigroup on [n] with rank(a) := |image(a)| = m. Then T(n,m) = |aS| where |aS| is the size of the principal right ideal generated by a. - Geoffrey Critzer, Dec 21 2021
REFERENCES
O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46.
LINKS
Wikipedia, Rook polynomial
FORMULA
Sum_{k=0..n} T(n, k) = A129833(n).
T(n,m) = A088699(n, m). - Peter Bala, Aug 26 2013
T(n,m) = A086885(n, m). - R. J. Mathar, Dec 19 2014
From G. C. Greubel, Aug 11 2022: (Start)
T(n, k) = Hypergeometric2F1([-n, -k], [], 1).
T(2*n, n) = A082545(n).
T(2*n+1, n) = A343832(n).
T(n, n) = A002720(n).
T(n, n-1) = A000262(n), n >= 1.
T(n, 1) = A000027(n+1).
T(n, 2) = A002061(n+1).
T(n, 3) = A135859(n+1). (End)
EXAMPLE
Triangle begins
1;
1, 2;
1, 3, 7;
1, 4, 13, 34;
1, 5, 21, 73, 209;
1, 6, 31, 136, 501, 1546;
1, 7, 43, 229, 1045, 4051, 13327;
1, 8, 57, 358, 1961, 9276, 37633, 130922;
1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729;
1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114;
1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231;
MAPLE
A176120 := proc(i, j)
add(binomial(i, k)*binomial(j, k)*k!, k=0..j) ;
end proc: # R. J. Mathar, Jul 28 2016
MATHEMATICA
T[n_, m_]:= T[n, m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}];
Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten
PROG
(Magma)
A176120:=func< n, k| (&+[Factorial(j)*Binomial(n, j)*Binomial(k, j): j in [0..k]]) >;
[A176120(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
(SageMath)
def A176120(n, k): return sum(factorial(j)*binomial(n, j)*binomial(k, j) for j in (0..k))
flatten([[A176120(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022
CROSSREFS
Cf. A086885 (table without column 0), A129833 (row sums).
Sequence in context: A326308 A073901 A116381 * A369595 A220621 A360587
KEYWORD
nonn,easy,tabl
AUTHOR
Roger L. Bagula, Apr 09 2010
STATUS
approved