OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..443
F. Hivert, J.-C. Novelli and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
FORMULA
Conjecture: +(n+1)*a(n) -n*(2*n+5)*a(n-1) +(n-1)*(n^2+6*n+3)*a(n-2) -(n-2)*(3*n^2-2)*a(n-3) +(n-2)*(n-3)*(3*n-4)*a(n-4) -(n-4)*(n-3)^2*a(n-5) = 0. - R. J. Mathar, Feb 28 2015
Conjecture: (n+1)*(n^2-4*n+2)*a(n) -n*(2*n^3-5*n^2-6*n+3)*a(n-1) +n*(n-1)*(n^3-2*n^2-2*n-2)*a(n-2) -(n-2)*(n^2-2*n-1)*(n-1)^2*a(n-3) = 0. - R. J. Mathar, Feb 28 2015
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n + 1/4) / sqrt(2) * (1 + 79/(48*sqrt(n))). - Vaclav Kotesovec, Oct 12 2016
From G. C. Greubel, Mar 10 2021: (Start)
a(n) = Sum_{k=0..n} binomial(n,k)^2 * ((n+1)*k!/(k+1)).
a(n) = (n+1)*Hypergeometric3F1([-n, -n, 1], [2], 1). (End)
MAPLE
MATHEMATICA
a[n_]:= Sum[Binomial[n+1, k+1]*Binomial[n, k]*k!, {k, 0, n}]; Table[a[n], {n, 0, 30}]
PROG
(Sage) [sum( binomial(n, k)^2*((n+1)*factorial(k)/(k+1)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 10 2021
(Magma) [(&+[Binomial(n, k)^2*((n+1)*Factorial(k)/(k+1)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 10 2021
(PARI) a(n) = sum(k= 0, n, binomial(n+1, k+1)*binomial(n, k)*k!); \\ Michel Marcus, Mar 10 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 21 2007
EXTENSIONS
Edited by N. J. A. Sloane, Sep 30 2007
STATUS
approved