login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129833
a(n) = Sum_{k = 0..n } binomial(n + 1, k + 1)*binomial(n, k)*k!.
3
1, 3, 11, 52, 309, 2221, 18703, 180216, 1952457, 23466223, 309577971, 4444537868, 68948023741, 1148825560377, 20455144724407, 387479309532976, 7778881684953873, 164942847995071611, 3682885668837002587, 86359724102207331876, 2121535102985378053061, 54482075844410029721893, 1459677302947807284662751
OFFSET
0,2
LINKS
F. Hivert, J.-C. Novelli and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
FORMULA
Conjecture: +(n+1)*a(n) -n*(2*n+5)*a(n-1) +(n-1)*(n^2+6*n+3)*a(n-2) -(n-2)*(3*n^2-2)*a(n-3) +(n-2)*(n-3)*(3*n-4)*a(n-4) -(n-4)*(n-3)^2*a(n-5) = 0. - R. J. Mathar, Feb 28 2015
Conjecture: (n+1)*(n^2-4*n+2)*a(n) -n*(2*n^3-5*n^2-6*n+3)*a(n-1) +n*(n-1)*(n^3-2*n^2-2*n-2)*a(n-2) -(n-2)*(n^2-2*n-1)*(n-1)^2*a(n-3) = 0. - R. J. Mathar, Feb 28 2015
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n + 1/4) / sqrt(2) * (1 + 79/(48*sqrt(n))). - Vaclav Kotesovec, Oct 12 2016
From G. C. Greubel, Mar 10 2021: (Start)
a(n) = Sum_{k=0..n} binomial(n,k)^2 * ((n+1)*k!/(k+1)).
a(n) = (n+1)*Hypergeometric3F1([-n, -n, 1], [2], 1). (End)
MAPLE
A129833 := proc(n)
add(A176120(n, k), k=0..n) ;
end proc: # R. J. Mathar, Feb 28 2015
MATHEMATICA
a[n_]:= Sum[Binomial[n+1, k+1]*Binomial[n, k]*k!, {k, 0, n}]; Table[a[n], {n, 0, 30}]
PROG
(Sage) [sum( binomial(n, k)^2*((n+1)*factorial(k)/(k+1)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 10 2021
(Magma) [(&+[Binomial(n, k)^2*((n+1)*Factorial(k)/(k+1)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 10 2021
(PARI) a(n) = sum(k= 0, n, binomial(n+1, k+1)*binomial(n, k)*k!); \\ Michel Marcus, Mar 10 2021
CROSSREFS
Sequence in context: A058799 A357833 A054362 * A321585 A368283 A107958
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 21 2007
EXTENSIONS
Edited by N. J. A. Sloane, Sep 30 2007
STATUS
approved