login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369595
Array read by downward antidiagonals: A(n,k) = A(n-1,k+2) + Sum_{j=0..k} binomial(k,j)*A(n-1,j) with A(0,k) = 1, n >= 0, k >= 0.
1
1, 1, 2, 1, 3, 7, 1, 5, 14, 37, 1, 9, 30, 89, 264, 1, 17, 68, 227, 737, 2433, 1, 33, 162, 611, 2169, 7696, 27913, 1, 65, 404, 1727, 6695, 25480, 98093, 386906, 1, 129, 1050, 5099, 21573, 87964, 358993, 1490687, 6346119, 1, 257, 2828, 15647, 72287, 315688, 1364681, 5959213, 26542518, 121159373
OFFSET
0,3
FORMULA
Conjecture: A(n,0) = A135920(n+1). - Mikhail Kurkov, Oct 27 2024
EXAMPLE
Array begins:
=============================================================
n\k| 0 1 2 3 4 5 6 ...
---+---------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 2 3 5 9 17 33 65 ...
2 | 7 14 30 68 162 404 1050 ...
3 | 37 89 227 611 1727 5099 15647 ...
4 | 264 737 2169 6695 21573 72287 251109 ...
5 | 2433 7696 25480 87964 315688 1174756 4522480 ...
6 | 27913 98093 358993 1364681 5376121 21901073 92076673 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+2*m+1, k, 1)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-2, k, v[k+2] + sum(j=1, k, binomial(k-1, j-1)*v[j])); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) }
CROSSREFS
Cf. A135920.
Sequence in context: A073901 A116381 A176120 * A220621 A360587 A058170
KEYWORD
nonn,tabl
AUTHOR
Mikhail Kurkov, Jan 27 2024
STATUS
approved