login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176122
Triangle, read by rows, T(n,k) = Sum_{j=1..k} binomial(n-1, j-1)*binomial(k, j - 1)*(j-1)!.
1
1, 1, 3, 1, 5, 13, 1, 7, 28, 73, 1, 9, 49, 185, 501, 1, 11, 76, 381, 1426, 4051, 1, 13, 109, 685, 3331, 12607, 37633, 1, 15, 148, 1121, 6756, 32593, 125882, 394353, 1, 17, 193, 1713, 12361, 73129, 354033, 1401409, 4596553, 1, 19, 244, 2485, 20926, 147295, 865936, 4233673, 17209234, 58941091
OFFSET
1,3
COMMENTS
Row sums are: {1, 4, 19, 109, 745, 5946, 54379, 560869, 6439409, 81420904, ...}.
FORMULA
T(n,k) = Sum_{j=1..k} binomial(n-1, j-1)*binomial(k, j - 1)*(j-1)!.
EXAMPLE
Triangle begins as:
1;
1, 3;
1, 5, 13;
1, 7, 28, 73;
1, 9, 49, 185, 501;
1, 11, 76, 381, 1426, 4051;
1, 13, 109, 685, 3331, 12607, 37633;
1, 15, 148, 1121, 6756, 32593, 125882, 394353;
1, 17, 193, 1713, 12361, 73129, 354033, 1401409, 4596553;
1, 19, 244, 2485, 20926, 147295, 865936, 4233673, 17209234, 58941091;
MAPLE
b:=binomial; T(n, k):=add((j-1)!*b(n-1, j-1)*b(k, j-1), j=1..k); seq(seq(T(n, k), k=1..n), n=1..10); # G. C. Greubel, Nov 27 2019
MATHEMATICA
T[n_, k_]:= Sum[Binomial[n-1, j-1]*Binomial[k, j-1]*(j-1)!, {j, k}]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
PROG
(PARI) b=binomial; T(n, k) = sum(j=1, k, (j-1)!*b(n-1, j-1)*b(k, j-1)); \\ G. C. Greubel, Nov 27 2019
(Magma) B:=Binomial; [(&+[Factorial(j-1)*B(n-1, j-1)*B(k, j-1): j in [1..k]]) : k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 27 2019
(Sage) b=binomial; [[sum(factorial(j-1)*b(n-1, j-1)*b(k, j-1) for j in (1..k)) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 27 2019
(GAP) B:=Binomial;; Flat(List([1..10], n-> List([1..n], k-> Sum([0..k], j-> Factorial(j-1)*B(n-1, j-1)*B(k, j-1)) ))); # G. C. Greubel, Nov 27 2019
CROSSREFS
Sequence in context: A266033 A105064 A073496 * A370380 A091623 A215474
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 09 2010
STATUS
approved